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SUMMARY 
A novel approach to the development of a code for the solution of the time-dependent two-dimensional Navier- 
Stokes equations is described. The code involves coupling between the method of lines (MOL) for the solution of 
partial differential equations and a parabolic algorithm which removes the necessity of iterative solution on 
pressure and solution of a Poisson-type equation for the pressure. The code is applied to a test problem involving 
the solution of transient laminar flow in a short pipe for an incompressible Newtonian fluid. Comparisons show 
that the MOL solutions are in good agreement with the previously reported values. The proposed method 
described in this paper demonstrates the ease with which the NavierStokes equations can be solved in an 
accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations 
(ODEs). 
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1. INTRODUCTION 

In the field of computational fluid dynamics (CFD) the advent of computers with their constantly 
growing processing and storing capabilities has made it possible to compute very complex flow fields 
by the numerical solution of the NavierStokes equations. Most algorithms on the solution of the 
Navier- Stokes equations are based on the steady state formulation and a considerable manner of 
finite-difference-, finite-volume- and finite-element-based numerical algorithms are available for the 
solution of these equations. However, development of a more efficient and accurate method, which 
this paper introduces, is still needed. 

The method proposed in this paper is a numerical solution technique for the solution of partial 
differential equations (PDEs). The proposed technique, the method of lines (MOL), consists of 
converting the PDE system into an ordinary differential equation (ODE) initial value problem by 
discretizing the spatial derivatives together with the boundary conditions via Taylor series, spline or 
weighted residual techniques arid integrating the resulting ODEs using a sophisticated ODE solver 
which takes the burden of time discretization and chooses the time steps in such a way that maintains 
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the accuracy and stability of the evolving solution. The most important advantage of the MOL 
approach is that it is has not only the simplicity of explicit methods but also the superiority of implicit 
methods unless a poor numerical method for the solution of ODEs is used. The computational 
accuracy and efficiency of this method have previously been reported by the present authors.' 
Detailed information on the MOL can be found elsewhere? In the present study the spatial 
derivatives of a dependent variable are approximated by using a five-point Lagrange interpolation 
p~lynomial.~ Hence it is possible to investigate the solutions of the NavierStokes equations on both 
uniform and non-uniform grid topologies by a higher-order discretization scheme in which 
convective terms are discretized using upwindings and diffusive terms are discretized centrally. The 
structured grid generator based on quadrilateral serendipity elements is used. In the present paper the 
primitive variables formulation is used for solving the two- dimensional, unsteady Navier-Stokes 
equations. 

The most advantageous feature of the MOL is that the resulting system of ODEs is an initial value 
problem (mathematically parabolic) and can be solved numerically by any powerful ODE solver. 
However, the presence of the coupled pressure gradients leads to an ill-posed initial value problem. 
Computing the pressure is the most difficult and CPU-consuming part of the overall solution of the 
incompressible NavierStokes equations and requires the solution of a Poisson-type equation which 
introduces an elliptic nature. In order to suppress the ellipticity, a parabolic algorithm in time which 
does not require the solution of a Poisson-type equation for the pressure is tailored. 

The main contribution of this paper is to propose a time-accurate NavierStokes code based on the 
MOL approach with a non-iterative algorithm for the pressure. The predictions are validated against 
the available numerical solution for laminar developing flow in a circular duct. 

2. GOVERNING EQUATIONS 

The NavierStokes equations for two-dimensional, unsteady, incompressible developing flow in a 
circular duct can be written in the form 

au av v -+ - f -  = 0. 
az ar r 

The initial and boundary conditions for the problem are 

I c  @ t = 0 ,  V r A V Z :  V = o ,  U = o ,  
BCl @ r = 0, V Z A W  v =  0,  &/ar = 0, 

BC2 @ r = R ,  V Z A V ~ :  v = O ,  u = O ,  

BC3 @ z = O ,  V r A V t :  v = O ,  U=%", 

BC4 @ z = L, V r  A vt: # v i a 2  = 0, a%/azZ = 0. 
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3. NUMERICAL SOLUTION TECHNIQUE 

3.1. Spatial discretization 

In the proposed method the spatial derivatives in the NavierStokes equations are approximated by 
utilizing the general definition of the five-point Lagrange interpolation polynomial 

The discretization procedure is applied in both radial and axial directions after the transformation of 
the dependent variable, say q(r,  z, t), into its pseudo-one- dimensional form, q(X, t), in a certain 
spatial direction X, for a value of remainder direction, by transforming the two-dimensional array into 
a one-dimensional array. For the sake of clarity the computer implementation of this transformation 
can be written as follows for all values along the radial direction at any axial level: 

do j = l , j z  
do i = 1,ir 
phi-ld(i) = phi_2d(i, j) 
end do 

... 
body of the discretization 
. . .  

do i=l,ir 
phi-x-Zd(i, j) = phi-x-ld(i) 
end do 

end do 

The pseudo-one-dimensional velocity at any point along the X-direction can be expressed by writing 
the Lagrange interpolation formula as 

where 

Differentiation of (1 0) with respect to X leads to 

The second derivative of (10) with respect to X can be easily obtained from 
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Thus the five-point Lagrange interpolation polynomial forms the mathematical basis for the 
calculation of weighting coefficients of the differentiation formulae. In the case of using equal 
intervals, the weighting coefficients &(?) becomes the elements of the Bickley matrix4 with the factor 
1/(4!Ax). Substitution of the spatial derivatives into the NavierStokes equations leads to the 
following coupled system of ODES in time: 

dsz 
- = F(J2), 
dt 

where 

Here IR and JZ are the numbers of grid points in the r- and z-direction respectively. 

3.2. Treatment of pressure gradient 

As already noted, the computation of pressure is the most difficult and most time-consuming part 
of the overall solution of the NavierStokes equations and there are various pressure correction 
methods which are applicable to both stationary and time-dependent incompressible flow equations. 
Basically, most of them involve an iterative procedure between the velocity and pressure fields 
through the solution of a Poisson-type equation for the pressure to satisfy the global mass flow 
constraint and divergence-free condition for confined flows. Existing methods using the primitive 
variables approach can be classified into three categories, namely pressure-based finite volume 
methods,536 projection (fractional step) methods7y8 and artificial compressibility  method^.^ 

Among the pressure-based finite volume methods, the most well-known algorithm is the SIMPLE 
method of Patankar and Spalding.' There are also some variants of the method, namely SIMPLER' 
and SIMPLEC.6 In this method, for an initial approximation of pressure, the momentum equations are 
solved to obtain a tentative velocity field which actually does not satisfy the divergence-free 
condition of velocity. In order to satisfy this condition, the obtained velocity field is inserted into the 
continuity equation to obtain a Poisson-type equation for the pressure correction and this is followed 
by the application of a cyclic series of guess-and-correct procedures on pressure and velocity fields. 

Fractional step methods, on the other hand, follow the Chorin alg~ri thm.~ Another widely used 
algorithm for the solution of the unsteady Navier- Stokes equations is the 'pressure implicit by 
splitting of operators' (PISO) algorithm proposed by Issa,' which is a similar approach to fractional 
step methods. In this approach a predictor-corrector-type scheme is adopted. In spite of the fact that 
the PIS0 algorithm does not require any iteration on pressure, it requires the solution of a Poisson- 
type equation for the pressure twice at each time step. Therefore this algorithm is not suitable for an 
efficient and time-accurate Navier-Stokes code. 

The artificial compressibility method proposed by Choring is an alternative non-iterative method 
which does not require the solution of a Poisson-type equation for the pressure. The principle of the 
method is to obtain the steady state solution of the NavierStokes equations from the transient form 
of the equations in the limit when t + 00. It depends upon the use of a fictitious state equation 
p / p  = p2, where /3 is an artificial sound speed. This method perturbs the continuity equation as 
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which is actually true only for the steady state. Hence the results predicted by the artificial 
compressibility method have no physical meaning before the steady state is reached. Furthermore, 
since the pressure is considered as a dependent variable in the artificial compressibility method, it 
brings a certain amount of burden to the ODE solver; as the number of grid points increases more 
equations have to be solved. The additional drawbacks of this method are the selection of a proper 
artificial compressibility factor, which actually vanes from case to case, and the associated stability 
problem. 

In the present paper a non-iterative procedure for the calculation of pressure is applied. In the 
transient solution of the NavierStokes equations the streamwise pressure gradient must be known in 
such a way that the mass conservation at each cross-section is satisfied. In order to accomplish this, 
the static pressure p(r, z, f )  in the NavierStokes equations is split into two parts as suggested by 
Raithby and Schneider: l o  

p(r,  z, t )  = jxz, 0 + j ( r ,  z ,  t>. (18)  
The physical assumption in this decoupling procedure is that aj/az is very small compared with 
aj/az. When the pressure field is split into two in this manner, equations (1) and (2)  can be written as 

(20) az ar par 
av av i a j  - av - - - u - - v  ---- + v  

at 

The pressure gradient in (19), aj/./aZ, is determined with the aid of global mass flow constraint 
combined with the discretized form of the z-momentum equation as follows: 

where 

At 
P" 

Y" = --. (23)  

Equation (21)  is then multiplied by the density pn+l and the resulting equation is subsequently 
integrated numerically over the cross- sectional area perpendicular to the streamwise direction. This 
yields 

Note that the density pn+l is not known a priori. For strictly incompressible flow it is logical to set 
pn+l - - p n . However, if the flow is even slightly compressible, then the density pn+l should be 
determined using values pn-' and p" by applying an accurate extrapolation method. Since the mass 
flow is prespecified by the problem inlet boundary condition, the pressure gradient can be 
determined as 
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On the other hand, the pressure gradient in (20), ajpr, should be determined in such a way that it 
satisfies the divergence-fiee condition of velocity for incompressible flow. In order to accomplish 
this, the general procedure to obtain the Poisson-type equation for the pressure is started. However, 
since the static pressure is split into parts by (18), the resulting equation, which can be written as 
follows, is not a Poisson-type equation: 

where 

with 

% = - - - K + v  ar (5 -+--+-, :aaf Try) at 

rc=---+--(rvZ)+--(rw), a222 1 a2 2 a 2  
a 9  r ar* r araz 

l a  
r = - + - - ( r v ) .  az r ar 

Note that if the pressure were not split into parts, then the following Poisson-type equation for the 
pressure would have been obtained which would require solution at each time step, resulting in an 
expensive procedure: 

1 

P 
-v2p = 3. 

Since the pressure gradients rather than the pressures are actually needed in the solution of the 
incompressible NavierStokes equations, equation (26) is rearranged as 

(l/Ari)(aj/ar);-l,j + pn%z, - @j/a.‘); 
, i = 2  ,..., IR, j = 1 ,  ..., JZ, (31) 

1 /Ari + 1 /Ti 

where 

Ari = ri - ri-l , (32) 

to solve for the pressure gradient ajlar to be used in the r-component momentum equation. By this 
formulation it is possible to investigate even detailed transient solutions of the NavierStokes 
equations. In this study, in order not to bring an extra burden to the ODE solver, the r-direction 
velocity v(r, z, t )  is determined with the direct utilization of the continuity equation by the formula 

v“ .=I v”.-(ri+l -Ti) (33) , i =  1 ,..., ZR-2, j = 2  ,..., JZ. 
1 + 1 , J  r’ [ ri+l l J  

Hence, by this formulation, not only is the r-direction velocity v(r, z, t) computed without bringing an 
extra burden to the ODE solver, but also the divergence-fiee condition for incompressible flows is 
satisfied automatically. 
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3.3. Time integration 

The integration of the resulting ODES derived from the discretization of the NavierStokes 
equations is carried out by an implicit algorithm (Adams-Moulton) embedded in the well-known 
ODE solver LSODES." The implicit nature of the solution method requires some additional 
discussion. In order to illustrate this, a typical implicit formulation for the solution of ODES can be 
written in the form of the backward Euler method as 

@+I = & + F(@+')At, (34) 
where @+I and F(@+') are the solution and derivative vectors respectively. As can be seen from 
(34), the derivative vector is evaluated at the next time level. In other words, equation (34) is implicit 
in the derivative vector F(@+'). It is this implicit term that gives the method its good stability 
properties. Therefore the elegance of the MOL is that it shares the advantages of both explicit and 
implicit methods. In the MOL the spatial derivatives and source terms are evaluated at the previous 
time level as applied in the explicit approach, so that no linearization problem arises. Furthermore, 
the solution of the resulting ODES is carried out by an implicit algorithm such as the implicit Adams- 
Moulton method," the backward differentiation formula (BDF) method" or the implicit Runge- 
Kutta method." Hence it can be concluded that the MOL has the simplicity of the explicit approach 
and the power of the implicit approach unless a poor algorithm for the solution of ODES is adopted. 

4. NUMERICAL SOLUTION PROCEDURE 

The general algorithm for the solution of the NavierStokes equations by using the MOL approach is 
based upon the evaluation of the derivative vector by which the solution is advanced from one time 
step to the next. Once the derivative vector has been obtained, the first step in solving the system is to 
combine the dependent variables into a one-dimensional array. The evaluation of the derivative 
vector can be summarized as follows. 

The complete velocity field satisfying the continuity equation is known apriori at the beginning of 
each cycle, either as a result of the previous cycle or from the prescribed initial conditions for the 
dependent variables. Once the spatial derivatives appearing in the governing equations have been 
evaluated using values from the previous cycle, the corresponding pressure gradients along the axial 
direction are calculated by using equation (25), which ensures that the mass flow is conserved. Then 
the radial component of the velocity is calculated by direct utilization of the continuity equation, so 
the divergence-free condition is ensured automatically. Once these calculations have been settled, the 
derivative vector is calculated over the spatial domain of interest, then it is sent to the ODE solver in 
the form of a one-dimensional array to compute the dependent variables at the advanced time level. 
This completes the progression of the solution to the end of the new cycle having the new values of 
the velocity field. This cyclic procedure is then continued until the steady state is reached. 

5 .  VALIDATION OF THE CODE 

Although there are some experimental data on velocity profiles for laminar flows in the tube entrance, 
those results are open to question owing to the absence of either original data points or a detailed 
description of the experimental work. Therefore the proposed code was validated with similar results 
obtained by HornbeckI3 in the developing region of a circular duct which is uniform in cross-section 
over its entire length. The internal diameter of the pipe, its length, the mean velocity at the inlet and 
the Reynolds number based upon the pipe diameter were taken as 1 cm, 15 cm, 4.3 cm s-' and 426 
respectively as reported by Agrawal et a1.I4 The numerical calculations were performed on an IBM 
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RISC Sys/6000-590. Calculations were carried out for increasing numbers of grid points clustered 
near the wall, centreline and inlet and the results were found to be independent of grid size beyond 41 
and 101 nodes along the radial and axial directions respectively. 

Figure 1 shows a comparison of the developing axial velocities at various radial positions in the 
entrance region of the pipe with the corresponding results of H~rnbeck.'~ As can be seen from the 
figure, the axial velocities in the regions close to the wall develop far more swiftly than those in the 
core region of the pipe. The predictions obtained by the present authors are in accord with those 
obtained by H~rnbeck. '~  The axial velocity profile for r/R = 0.8 shows a concave profile close to the 
entrance. This concavity in the entrance region is also in good agreement with the findings of other 
 worker^.'^ 

Figure 2 shows the profiles of the radial velocities along the transverse direction at various axial 
positions. The radial velocities increase away from the wall, reach maxima and then decrease to zero 
at the pipe centre, as expected. The maximum values of radial velocities show a tendency to decrease 
along the downstream direction and almost vanish as the flow reaches its fully develop state. 

Figure 3 shows the percentage relative errors in mass flow at the pipe exit with respect to the actual 
mass flow known a priori by the problem inlet boundary conhtion, at various time intervals. For 
time-accurate NavierStokes codes the mass flow should be conserved at each time step. In order to 
accomplish this, the static pressure in the governing equations is split into parts and then the axial 
pressure gradient, which is actually the term responsible for satisfying the mass conservation, is 
calculated with the aid of mass flow constraint. As can be seen from the figure, the percentage relative 
error is 100 per cent at the beginning because of the stagnant condition at t = 0. Since it takes the fluid 
molecules at the pipe exit a certain time to be energized by the upstream fluid molecules, the 
satisfaction of the mass flow at the exit takes the same period of time. In order to take this into 
consideration, the computations should be carried out at very small time intervals. As can be seen 
from the figure, as the time interval to update the pressure gradient increases, the percentage relative 

h A " * A v 

___ Present computations 
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Dimensionless axial distance, dD 

Figure 1. Variation in axial velocity with inlet distance for various radial positions 
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Figure 2. Radial velocity profiles in developing flow 
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Figure 3. Percentage relative error in mass flow 
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Figure 4. Variation in pressure with axial distance 

error takes more time to vanish. However, sophisticated ODE solvers generally adjust the marching 
step size automatically. Therefore in the present study the output inquiry time interval Atpu = s 
was used to update the axial pressure gradient. 

Figure 4 shows a comparison of the axial variation in predicted pressure with that obtained by 
H0rnbe~k.l~ In the downstream region of the pipe a constant pressure gradient is predicted, whereas 
in the inlet region of the pipe a higher pressure gradient is obtained to overcome the axial flow 
development. 

As can be seen from Figures 1 and 4, the present results are in good agreement with those obtained 
by H0rnbe~k. l~ The small discrepancies between the predictions obtained by the present authors and 
those obtained by H~rnbeck '~  can be attributed to the fact that the results obtained by HornbeckI3 are 
based upon boundary layer assumptions. 

In order to show the ability of the present code to predict transient solutions, the radial variation in 
axial velocity at the exit of the pipe at various times is exhibited in Figure 5.  As can be seen from the 
figure, the time development of velocity profiles at the pipe exit shows the expected trend. 

6. CONCLUSIONS 

The main objective of this study have been to introduce the MOL solution of the time-dependent two- 
dimensional NavierStokes equations and provide a parabolic algorithm which does not require any 
iteration on the pressure nor solution of a Poisson-type equation for the pressure. 

The computational procedure proposed in this study has the simplicity of the explicit approach and 
the power of the implicit approach and does not require any linearization in the governing equations. 
The method has been applied to the calculation of transient laminar flow development and pressure 
drop in the entrance region of a circular duct. In the absence of transient numerical predictions and 
experimental data, the code has been validated only against steady state numerical predictions 
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Figure 5. Time development of axial exit velocity profiles (------- , steady state) 

previously reported in the literature. The good agreement obtained shows that the present code 
provides a useful tool for the investigation of the time evolution of detailed, unsteady structures in a 
flow field. 

ACKNOWLEDGEMENTS 

This study was performed as part of AGARD Project TSl/PEP on ‘Soot Formation and Radiative 
Heat Transfer in Combustors’. The support is gratefully acknowledged. 

APPENDIX: LIST OF SYMBOLS 

weighting coefficients of dependent variable defined by Lagrange interpolation polynomial 
weighting coefficients of fist derivative of dependent variable defined by Lagrange 
interpolation polynomial 
diameter 
derivative vector of dependent variables 
number of nodes in r-direction 
number of nodes in z-direction 
mass flow rate 
static pressure 
component of pressure to be used in z-momentum equation 
component of pressure to be used in r-momentum equation 
spatial independent variables in cylindrical co- ordinates 
radius 
time 
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u, v 
X generic spatial independent variable 
v2 Laplacian 

components of velocity vector 

Greek letters 

j artificial sound speed 
A increment 
v kinematic viscosity 
p density 
cp 
fi 

dependent variable transformed into one-dimensional array 
solution vector of dependent variables 

Subscripts 

in inlet 
pu pressure update 
i 
xx 

first derivative of dependent variable 
second derivative of dependent variable _- 

Superscripts 

n previous time level 
n + 1 next time level 
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